
Page 1 of 7

Software design

3.1 Software design is the process by which an agent creates a specification of a

software artifact, intended to accomplish goals, using a set of primitive

components and subject to constraints. Software design may refer to either "all the

activities involved in conceptualizing, framing, implementing, commissioning, and

ultimately modifying complex systems" or "the activity following requirements

specification and before programming, as ... [in] a stylized software engineering

process."

Software design usually involves problem solving and planning a software

solution. This includes both low-level component and algorithm design and high-

level, architecture design.

3.2 Overview

Software design is the process of implementing software solutions to one or more

set of problems. One of the important parts of software design is the software

requirements analysis (SRA). It is a part of the software development process that

lists specifications used in software engineering. If the software is "semi-

automated" or user centered, software design may involve user experience design

yielding a story board to help determine those specifications. If the software is

completely automated (meaning no user or user interface), a software design may

be as simple as a flow chart or text describing a planned sequence of events. There

are also semi-standard methods like Unified Modeling Language and Fundamental

modeling concepts. In either case, some documentation of the plan is usually the

product of the design. Furthermore, a software design may be platform-

independent or platform-specific, depending on the availability of the technology

used for the design.

Software design can be considered as creating a solution to a problem in hand with

available capabilities. The main difference between Software analysis and design is

that the output of a software analysis consist of smaller problems to solve. Also,

the analysis should not be very different even if it is designed by different team

members or groups. The design focuses on the capabilities, and there can be

multiple designs for the same problem depending on the environment that solution

will be hosted. They can be operations systems, webpages, mobile or even the new

cloud computing paradigm. Sometimes the design depends on the environment that

it was developed for, whether it is created from reliable frameworks or

implemented with suitable design patterns.

http://en.wikipedia.org/wiki/Agency_(philosophy)
http://en.wikipedia.org/wiki/Artifact_(software_development)
http://en.wikipedia.org/wiki/Goal
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Software_requirements
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Algorithm_design
http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_requirements_analysis
http://en.wikipedia.org/wiki/Software_requirements_analysis
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Specifications
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/User_centered_design
http://en.wikipedia.org/wiki/User_experience_design
http://en.wikipedia.org/wiki/Story_board
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/User_(computing)
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Flow_chart
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Fundamental_modeling_concepts
http://en.wikipedia.org/wiki/Fundamental_modeling_concepts
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Platform-independent_model
http://en.wikipedia.org/wiki/Platform-independent_model
http://en.wikipedia.org/wiki/Platform-specific_model
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Design_patterns

Page 2 of 7

When designing software, two important factors to consider are its security and

usability.

Software Design

Software design is both a process and a model. The design process is a sequence of

steps that enable the designer to describe all aspects of the software to be built. It is

important to note, however, that the design process is not simply a cookbook.

Creative skill, past experience, a sense of what makes “good” software, and an

overall commitment to quality are critical success factors for a competent design.

The design model is the equivalent of an architect’s plans for a house. It begins by

representing the totality of the thing to be built (e.g., a three-dimensional rendering

of the house) and slowly refines the thing to provide guidance for constructing each

detail (e.g., the plumbing layout). Similarly, the design model that is created for

software provides a variety of different views of the computer software. Basic

design principles enable the software engineer to navigate the design process.

Davis [DAV95] suggests a set of principles for software design, which have been

adapted and extended in the following list:

 The design process should not suffer from “tunnel vision.” A good

designer should consider alternative approaches, judging each based on the

requirements of the problem, the resources available to do the job.

 The design should be traceable to the analysis model. Because a single

element of the design model often traces to multiple requirements, it is

necessary to have a means for tracking how requirements have been satisfied

by the design model.

 The design should not reinvent the wheel. Systems are constructed using a

set of design patterns, many of which have likely been encountered before.

These patterns should always be chosen as an alternative to reinvention.

Time is short and resources are limited! Design time should be invested in

representing truly new ideas and integrating those patterns that already exist.

 The design should “minimize the intellectual distance” between the

software and the problem as it exists in the real world. That is, the

structure of the software design should (whenever possible) mimic the

structure of the problem domain.

 The design should exhibit uniformity and integration. A design is

uniform if it appears that one person developed the entire thing. Rules of

style and format should be defined for a design team before design work

begins. A design is integrated if care is taken in defining interfaces between

design components.

Page 3 of 7

 The design should be structured to accommodate change. The design

concepts discussed in the next section enable a design to achieve this

principle.

 The design should be structured to degrade gently, even when aberrant

data, events, or operating conditions are encountered. Well- designed

software should never “bomb.” It should be designed to accommodate

unusual circumstances, and if it must terminate processing, do so in a

graceful manner.

 Design is not coding, coding is not design. Even when detailed procedural

designs are created for program components, the level of abstraction of the

design model is higher than source code. The only design decisions made at

the coding level address the small implementation details that enable the

procedural design to be coded.

 The design should be assessed for quality as it is being created, not after

the fact. A variety of design concepts and design measures are available to

assist the designer in assessing quality.

 The design should be reviewed to minimize conceptual (semantic)

errors. There is sometimes a tendency to focus on minutiae when the design

is reviewed, missing the forest for the trees. A design team should ensure

that major conceptual elements of the design (omissions, ambiguity,

inconsistency) have been addressed before worrying about the syntax of the

design model.

Design Concepts

The design concepts provide the software designer with a foundation from which

more sophisticated methods can be applied. A set of fundamental design concepts

has evolved. They are:

1. Abstraction - Abstraction is the process or result of generalization by

reducing the information content of a concept or an observable phenomenon,

typically in order to retain only information which is relevant for a particular

purpose.

2. Refinement - It is the process of elaboration. A hierarchy is developed by

decomposing a macroscopic statement of function in a step-wise fashion

until programming language statements are reached. In each step, one or

several instructions of a given program are decomposed into more detailed

instructions. Abstraction and Refinement are complementary concepts.

3. Modularity - Software architecture is divided into components called

modules.

http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Program_refinement
http://en.wikipedia.org/wiki/Modularity

Page 4 of 7

4. Software Architecture - It refers to the overall structure of the software and

the ways in which that structure provides conceptual integrity for a system.

A good software architecture will yield a good return on investment with

respect to the desired outcome of the project, e.g. in terms of performance,

quality, schedule and cost.

5. Control Hierarchy - A program structure that represents the organization of a

program component and implies a hierarchy of control.

6. Structural Partitioning - The program structure can be divided both

horizontally and vertically. Horizontal partitions define separate branches of

modular hierarchy for each major program function. Vertical partitioning

suggests that control and work should be distributed top down in the

program structure.

7. Data Structure - It is a representation of the logical relationship among

individual elements of data.

8. Software Procedure - It focuses on the processing of each modules

individually

9. Information Hiding - Modules should be specified and designed so that

information contained within a module is inaccessible to other modules that

have no need for such information

Design considerations

There are many aspects to consider in the design of a piece of software. The

importance of each should reflect the goals the software is trying to achieve. Some

of these aspects are:

 Compatibility - The software is able to operate with other products that are

designed for interoperability with another product. For example, a piece of

software may be backward-compatible with an older version of itself.

 Extensibility - New capabilities can be added to the software without major

changes to the underlying architecture.

 Fault-tolerance - The software is resistant to and able to recover from

component failure.

 Maintainability - A measure of how easily bug fixes or functional

modifications can be accomplished. High maintainability can be the product

of modularity and extensibility.

 Modularity - the resulting software comprises well defined, independent

components. That leads to better maintainability. The components could be

then implemented and tested in isolation before being integrated to form a

http://en.wikipedia.org/wiki/Software_Architecture
http://en.wikipedia.org/w/index.php?title=Control_Hierarchy&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Structural_Partitioning&action=edit&redlink=1
http://en.wikipedia.org/wiki/Data_Structure
http://en.wikipedia.org/w/index.php?title=Software_Procedure&action=edit&redlink=1
http://en.wikipedia.org/wiki/Information_Hiding
http://en.wikipedia.org/wiki/Extensibility
http://en.wikipedia.org/wiki/Fault-tolerance
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Modularity

Page 5 of 7

desired software system. This allows division of work in a software

development project.

 Reliability - The software is able to perform a required function under stated

conditions for a specified period of time.

 Reusability - the software is able to add further features and modification

with slight or no modification.

 Robustness - The software is able to operate under stress or tolerate

unpredictable or invalid input. For example, it can be designed with a

resilience to low memory conditions.

 Security - The software is able to withstand hostile acts and influences.

 Usability - The software user interface must be usable for its target

user/audience. Default values for the parameters must be chosen so that they

are a good choice for the majority of the users.[3]

 Performance - The software performs its tasks within a user-acceptable

time. The software does not consume too much memory.

 Portability - The usability of the same software in different environments.

 Scalability - The software adapts well to increasing data or number of users.

Modeling language

A modeling language is any artificial language that can be used to express

information or knowledge or systems in a structure that is defined by a consistent

set of rules. The rules are used for interpretation of the meaning of components in

the structure. A modeling language can be graphical or textual. Examples of

graphical modeling languages for software design are:

 Business Process Modeling Notation (BPMN) is an example of a Process

Modeling language.

 EXPRESS and EXPRESS-G (ISO 10303-11) is an international standard

general-purpose data modeling language.

 Extended Enterprise Modeling Language (EEML) is commonly used for

business process modeling across a number of layers.

 Flowchart is a schematic representation of an algorithm or a step-wise

process,

 Fundamental Modeling Concepts (FMC) modeling language for software-

intensive systems.

 IDEF is a family of modeling languages, the most notable of which include

IDEF0 for functional modeling, IDEF1X for information modeling, and

IDEF5 for modeling ontologies.

http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Fault-tolerant_system
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/Software_design#cite_note-3
http://en.wikipedia.org/wiki/Performance
http://en.wikipedia.org/wiki/Software_portability
http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
http://en.wikipedia.org/wiki/Process_Modeling
http://en.wikipedia.org/wiki/Process_Modeling
http://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Extended_Enterprise_Modeling_Language
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Fundamental_Modeling_Concepts
http://en.wikipedia.org/wiki/IDEF
http://en.wikipedia.org/wiki/IDEF0
http://en.wikipedia.org/wiki/IDEF1X
http://en.wikipedia.org/wiki/IDEF5

Page 6 of 7

 Jackson Structured Programming (JSP) is a method for structured

programming based on correspondences between data stream structure and

program structure

 LePUS3 is an object-oriented visual Design Description Language and a

formal specification language that is suitable primarily for modelling large

object-oriented (Java, C++, C#) programs and design patterns.

 Unified Modeling Language (UML) is a general modeling language to

describe software both structurally and behaviorally. It has a graphical

notation and allows for extension with a Profile (UML).

 Alloy (specification language) is a general purpose specification language

for expressing complex structural constraints and behavior in a software

system. It provides a concise language based on first-order relational logic.

 Systems Modeling Language (SysML) is a new general-purpose modeling

language for systems engineering.

Design patterns

A software designer or architect may identify a design problem which has been

solved by others before. A template or pattern describing a solution to a common

problem is known as a design pattern. The reuse of such patterns can speed up the

software development process, having been tested and proven in the past.

Technique

The difficulty of using the term "design" in relation to software is that in some

sense, the source code of a program is the design for the program that it produces.

To the extent that this is true, "software design" refers to the design of the design.

Edsger W. Dijkstra referred to this layering of semantic levels as the "radical

novelty" of computer programming, and Donald Knuth used his experience writing

TeX to describe the futility of attempting to design a program prior to

implementing it:

TEX would have been a complete failure if I had merely specified it and not

participated fully in its initial implementation. The process of implementation

constantly led me to unanticipated questions and to new insights about how the

original specifications could be improved.

http://en.wikipedia.org/wiki/Jackson_Structured_Programming
http://en.wikipedia.org/wiki/Lepus3
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Design_patterns
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Profile_(UML)
http://en.wikipedia.org/wiki/Alloy_(specification_language)
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/General-purpose_modeling
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/TeX

Page 7 of 7

Usage

Software design documentation may be reviewed or presented to allow constraints,

specifications and even requirements to be adjusted prior to computer

programming. Redesign may occur after review of a programmed simulation or

prototype. It is possible to design software in the process of programming, without

a plan or requirement analysis, but for more complex projects this would not be

considered feasible. A separate design prior to programming allows for

multidisciplinary designers and Subject Matter Experts (SMEs) to collaborate with

highly skilled programmers for software that is both useful and technically sound.

Making of robots is also a huge use of software design

http://en.wikipedia.org/wiki/Software_design_document
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Multidisciplinary
http://en.wikipedia.org/wiki/Subject_Matter_Expert

